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I. INTRODUCTION

In the photorefractive effect the photo-generation and

redistribution of charges among traps, due to nonuniform

illumination of light, results in the formation of a space-charge

field. Through the electro-optic effect, a volume holographic

phase grating is formed. The dynamics of the photorefractive

grating formation and erasure is equivalent to performing a tirre

integration. The photorefractive method of time-integration is

attractive for optical signal processing requiring an optically

addressed spatial light modulator. Photorefractive integration

also has the advantages of providing parallel optical output,

bias-free operation, and high resolution[l]. The use of

photoref ractives for time integration was f irst suggested by

Psaltis et a1413j and more recently by Montgomery[2].

This report examines the use of photorefractive crystals as

time-integrating elements for optical signal processing.

Particular emphasis is directed towards the application to

acousto-optic adaptive processing. Section 2 provides a

background on photorefraction and the application to signal

processing. Section 3 presents new theoretical and experimental

investigations on nonstationary photorefractive recording

techniques, in sillenite crystals. The ac field and moving

grating techniques appear attractive for signal processing

applications in Bil2Si0 2 0 (BSO), but there has not been available

an acc~urate means of predicting the performance characteristics.

-Section -4 destribes experimental investigations at

photorefractive characteristics related to implementation as

2



integrators. BSO is emphasized as a candidate material. Barium

titanate is considered also. Section 5 describes the use of a

photorefractive integrator in an acousto-optic adaptive

processing application.
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2. BACKGROUND

This section provides a background on photorefraction and

the application of the photorefractive effect to acousto-optic

signal processing.

2.1 Acousto-Optic Correlation

Acousto-optic correlation is an important function of

optical signal processing. A time integrating acousto-optic

correlator is shown schematically in Figure 1. Here one signal,

s(t)cos(wc(t-Ds) is applied to the acoustic input of the Bragg

cell and the other, r(t)cos(wc(t-Dr)), is modulated directly onto

the laser source. If a time integrating element is placed in the

image plane of the Bragg cell, then the integrated optical

exposure I(x) will contain the correlation function between s(t)

and r(t).

I(x) = I0[l+msin(wc(Dr+Ds +x/v)] Jr(t+Dr)s(t-Ds-x/v)dt. (1)

Here v is the acoustic velocity of the AO cell, Dr and Ds are

time delays, and m is a modulation term determined by the

diffraction efficiency of the AO cell and the modulation depth

imposed on the laser source.

Usually a photodetector array is used to read this exposure

and extract the correlation values. The processing is done in

the electronic domain. Alternatively, a photorefractive material

could be used to perform the integration. In this case the

correlation would be read out optically.

4



Integrating
Photodeteclor

Modulated Ligght
Source

Bragg Cell
(acoustic wave)

Figure 1. Acousto-OptiC time integrating correlator.

A4

Figure 2. Schematic of photorefractive detector.
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2.2 Photorefractive integration

The basic physical model of photorefraction has been well

established. The process involved is a light-induced

redistribution of charges among traps. The resulting space-

charge field then modulates the refractive index through the

linear electro-optic effect. The response of the photorefractivo-

material to a spatially modulated light intensity pattern is well

described by a set of nonlinear differential equations.

The basic configuration for utilizing the photorefractive

effect is shown schematically in Figure 2. The interference of

two coherent write beams, which may be modulated both spatially

and temporally, give rise to an intensity distribution within the

crystal given by:

I(x,t) = Io + II(x,t)exp(iKx) (2)

where K is grating spatial frequency of the optical carrier,

determined by the crossing angle of the two write beams.

Provided that the spatial variations of Ii(x,t) are slow compared

to the grating frequency and the magnitude of I. is much less

than 10 (small modulation approximation), the space charge field

formed in the crystal. is[l]

Esc(X,t) = Elexp(iKx + 4) Jexp[(t-t')/Tg]II(x.tt)/Io dt' (3)

6



where El and rg are complex and depend on material parameters and

external conditions. This response may be approximated asti]

ft
Esc(X,t) ; Elexp(iKx + 0) 1 II(x,t')/I 0 dt' (4)jt-T g

The space charge field, therefore, reflects a running average

of the light intensity pattern. For an exposure given by

equation (1) the space charge field is

r
Esc(x) = Elmsin(wc(x/v+o)] Ir(t+Dr)s(t-Ds-x/v)dt (5).J

Tie photorefractive phase grating therefore contains the desired

correlation with spatial carrier of frequency Wc/V.

2.3 Holographic readout

Through the electro-optic effect, the photorefractive space

charge field modulates the refractive index to create a

holographic phase grating. The magnitude of the phase grating is

given by

An = 1/2no 3 reffEsc (6)

where nO is the index of refraction reff is the effective

electro-optic tensor component. This grating may be read out

with a plane wave read beam via Bragg diffraction, as indicated

in Fig. 2. The wavelength of the read beam need not be the same

as the write beams. The diffraction efficiency n, defined as the

7



ratio of the diffracted intensity to the incident intensity, is

given by

= exp(-al)sin 2 (,fAnl/X) (7)

where a is the absorption coefficient, 1 is the interaction

length, and X is the wavelength. The amplitude of the diffracted

read beam is proportional to ESC, and therefore, the correlation

function This read beam may be detected with - photodiode

array.

For acousto-optic adaptive signal processing applications

which are of interest to Rome Laboratory an alternate holographic

readout approach is appropriate. In this application +he

magnitudes of r(t) and s(t) are slc:wly varying in time and both

the magnitude and phase of the hologram is required. This can be

obtained with a heterodyne detection of the readout. Here the

zeroth order and first order readout beams are imaged onto an AO

Bragg cell, whose acousto optic spatial frequency is matched to

the photorefractive spatial frequency. The zeroth order beam is

Bragg tuned to the AO cell so that the first order AO Bragg

diffraction overlaps the photorefractive holographic diffracted

beam. The detected signal will then contain a dc term plus a

heterodyne component with a frequency equal to that of the drive

frequency of the Bragg cell. The magnitude of the heterodyne

signal will be proportional to the magnitude of the space charge

field, and therefore the correlation term. The phase of the

detected signal, relative to a reference input, will depend upon

the physical location of the holographic grating inside the

photorefractive crystal, which in turn depends upon the phase



difference between r(t) and s(t).

2.4 Photorefractive crystal characteristics

In this section we highlight some of the key photorefractive

crystal characteristics, relevant to acousto-optic signal

processing. A more detailed review of photorefractive properties

can be found in references 3 and 4.

The diffraction efficiency is a key characteristic, directly

related to the system signal to noise ratio and its dyn;Amic

range. As seen by equations (6) and (7), the diffraction

efficiency depends upon the magnitude of the induced space charge

field and on the electro-optic coefficient.

We consider first the space charge field. Its magnitude

will depend primarily on the external conditions, such as applied

electric field and grating period. Under the anticipated imaging

conditions the crystals will be used in the long grating period

regime, with grating perioab on the order of 10 to 50 gm. At

these long grating periods the space charge field, in the absence

of an applied electric field, is diffusion limited, and is given

by

ESC z mED = m2rkBT/(Aq) (8)

where A is the grating period q is the electronic charge, kB is

Boltzman's constant, and T is the temperature, and m is the

modulation depth of the light intensity pattern. For a 20 gm

grating period ED is only about 80 V/cm. The space charge field

9



can be significantly increased by the application of the electric

field, EA. For a dc applied field the magnitude of the space

charge field is then

ES z mEA (9)

Typical applied field strengths are 2-10 KV/cm. Further

enhancements can be realized through nonstationary recording

techniques of moving gratings or applied alternating electric

fields[3,5]. With these techniques the space charge field can be

enhanced by a factor R over that of a dc field alone. The

enhancement factor R depends upon crystal parameters such as the

mobility lifetime product, as well as the applied voltage. A

typical value of R for sillenite crystals is about 3 to 4. This

makes the nonstationary recording techniques very attractive, and

will be discussed in more detail in section 3.

The diffraction efficiency also depends upon the magnitude of

the electro-optic coefficient. The electro-optic coefficients of

some representative crystals are shown in Table 1. Although

those crystals with large electro-optic coefficients offer the

highest diffraction efficiency, this characteristic may be offset

by time response considerations.

The time constant for the buildup of the photorefractive

grating is also an important characteristic. The time required

to record a grating depends upon the charge generation and

transport processes, and is inversely proportional to the light

intensity.

Three separate classes of photorefractive materials have

dominated -- ferroelectric oxides, cubic oxides (sillenites) and

10



semi-insulating compound semiconductors. The ferroelectric

oxides such as barium titanate (BaTiO3 ) have large electro-optic

coefficients, leading to large diffraction efficiencies. On the

other hand these crystals have small charge carrier mobilities

and large dielectric constants, which cause poor sensitivity.

The sillenites, such as Bil 2 SiO2 0 (BSO) have much smaller

electro-optic coefficients, similar mobilities, and smaller

dielectric constants, and are more sensitive than the

ferroelectrics. The semi-insulating semiconductors, such as GaAs

and InP, have small electro-optic coefficients, but large

mobilites. A comparison of photorefractive properties is shown

in Table 1.

BSO was chosen as a candidate photorefractive integrator which

could be immediately transitioned into the acousto-optic adaptive

processor. BSO is widely available commercially, and is also

grown at Rome Laboratory. BSO has good sensitivity at 514 nm,

the current design wavelength of the adaptive processor which

uses a liquid crystal light valve as the integrating element, and

is readily available in widths greater than 1 cm. Although the

electro-optic coefficient is small (z 4 pm/V), BSO has the

necessary response time of about 10-100 msec.
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TABLE 1. Properties of some photorefractive crystals

PARAMETER UNITS BaTiO3  BSO GaAs

wavelength range 'am 0.4 - 0.8 0.45-0.65 1.0-1.5

dielectric constant 3700 (Ell) 56 13
135 (E3 3 )

EO coefficient pm/V 1640 (r 4 2 ) 4 (r 4 1 ) 1.4 (r 4 1 )
90 (r 3 3 )
24 (r 1 3 )

mobility cm2/V-s 0.2 0.1 5000

photoconductivity cm2 /V 10-I0 10-7 10-4

response time msec 1-10K 10-100 10-100
(at 100 mW/cm2 )

Recently, a new class of photorefractive structures have

been developed which take advant2.ge of the high nonlinearities

possible in multiple quantum well structures[5,6]. Two

geometries have emerged, the so called perpendicular and parallel

geometry according to whether the electric field is applied

perpendicular or parallel to the quantum well layers. High

diffraction efficiencies have been demonstrated in the MQWs. The

MQWs have the advantages of fast response times, operation at

laser diode wavelengths, and low voltage biasing requirements.

These devices are not yet commercially available, and were not

tested in this effort.
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3. NONSTATIONARY PHOTOREFRACTIVE RECORDING TECHNIQUES

Enhancements in the photorefractive effect can be achieved in

sillenite crystals such as Bi 1 2 SiO2 0 (BSO) and Bi 1 2 TiO2 0 (BTO)

by the use of nonstationary external conditions.47-11] The ac

field(8-10] and moving grating[7,10,11] techniques can

significantly increase the magnitude of the space charge field

over that which would result from the application of a dc field

alone. These enhancement techniques also maximize the component

of the index grating at 900. The high diffraction efficiency

and phase characteristics of the grating make these nonstationary

recording techniques attractive for device applications.

However, the large enhancements have been achieved only with weak

signal beams. For modulation index, m, greater than about 0.02,

the performance apparently falls off significantly with

increasing m.(7,12,13] This behavior is in contrast to the mild

influence of modulation index on the gain coefficient under

stationary recording conditions.[14] An understanding of the

nonstationary recording behavior is important when considering

the limitations of these devices.

The usual solutions of the nonlinear material equations

utilize the small modulation approximation to obtain analytical

expressions. These linearized solutions have provided good

agreement with experiment for stationary recording conditions

even up to m - 1. For nonstationary recording conditions it is

necessary to include higher harmomincs when the small m

approximation is not strictly valid.
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Some progress had been made in understanding the modulation

effects with nonstationary recording conditions, primarily for

moving gratings.[7,14-17] Refregier et al.[7] were able to

obtain partial agreement with their experimental data for moving

gratings by applying a second order perturbation. Swinburne et

al.[14) and Au and Solymar[15,16] obtained numerical steady

state solutions which predicted a gain saturation, but these

effects were not examined in any detail. Swinburne et al.[14}

derived some approximate results for external conditions of an

applied square wave ac field which predicted the existence of an

upper limit to the enhancement of the space charge field. Their

model provides an analytical expression for the local space

charge field as a function of modulation index, but does not

have the proper grating period dependence.[13]

In this section we examine in more detail the modulation

dependence under nonstationary recording conditions of applied ac

fields and moving gratings. The goal is to provide the

necessary understanding to be able to model and predict the

performance characteristics of photorefractive integrators. A

finite difference method was developed to model the

photorefractive grating formation in BSO and BTO crystals, and is

described in detail. The influence of modulation index on the

magnitude, spatial distribution, and temporal evolution of the

space charge field are examined. The space charge field

magnitude is shown to be limited to the order of the applied

electric field and that the dependence of the space charge field

on modulation index can be predicted from crystal parameters

over a large range of recording conditions. The numerical

14



results are generalized to other crystal parameters and external

conditions by finding analytical equations which approximate the

numerical solutions. The ac field case is examined in section

3.1, where the numerical method is also described. In section

3.2 the analysis is applied to moving gratings.

15



3.1 AC Fields

In the ac field technique the external alternating electric

field is applied with a time period Tac which satisfies the

conditions Tg >> Tac >> TR, where g is the grating formation

time constant and TR is the free carrier lifetime. The phase

grating is then 900 phase shifted with respect to the fringe

pattern. The magnitude of the space charge field depends on the

form of the ac field. A square-wave alternating field is much

more efficient than a sinusoidal alternating field of the same

amplitude. The magnitude of space charge field for the square-

wave case is given by[8]

ED 1 + KLEEA/[ED(I+K2 LD2 )]
ESC = ------------------- (0)

(l+K 2 1s 2 ) 1 + K2 LErE/[(I+K2 LD 2 ) (1+K 2 1s)2

where ED = KkBT/q, LE = TR EA is the drift length, LD =(DTR) 1/2

is the diffusion length, is = (f 0okBT/q 2 Ne) I/2 , and rE -

cc0 EA/qNe. The peak magnitude of the space-charge field varies

as ATRNe. For sillenite crystals this value (Esc/m) is

approximately 4 EA.

An important feature of nonstationary recording is that the

grating formation time constant is real for the square wave ac

field technique, and is equal to the time constant for a dc

applied electric field[9,10].

3.1.1 Numerical Method

In order to determine the characteristics of the space-charge

field under conditions of high modulation the grating formation

16



was modeled with a finite difference scheme. The microscopic

space-charge field was calculated under the assumptions that the

spatial symmetry of the grating formation was one dimensional and

periodic in the grating vector direction. With these assumptions

it was only necessary to calculate the charge redistribution over

one grating period of length, which was divided into N cells.

The electric field, and free carrier, carrier current, and

charge densities were determined for each cell. The current was

allowed to flow for a time period St and the change in the free

carrier concentration was determined by the continuity equation.

The distribution of charge among free carriers and traps was then

recalculated and the other quantities updated.

We start with the material equations which describe the

redistribution of charges among traps. These equations are:

dNl/dt = -(SII + 8 1)NI + yI(NlT - NI)Nh (11)

dNh/dt = -dNl/dt (12)

aNh/dt dNh/dt - V.h (13)

hh hNhE -DVNh, (14)

V.E (15)

where NIT is the total number density of photorefractive

centers, N1 is the number density of unionized charge donors,

Nh is the number density of free carriers (our equations are

written for positively charged free carriers), Jh is the free

carrier current density, S 1 is the photon-absorption cross

section, 71 is the recombination coefficient, 81 is the thermal

17



ionization rate, Ah is the carrier mobility, D is the diffusion

coefficient given by D = AhkBT/q, E is the electric field which

includes both the applied field EA and the space charge field

ESC, f is the dielectric constant, co is the permittivity of free

space, p is the charge density, and I is the laser intensity.

The light intensity pattern is assumed to be spatially periodic

and may be time-varying. We assume a sinusoidal intensity

pattern with the following form.

I(xt) = Io(t){l + msin(Kx-l(t)]}, (16)

where Io is the total intensity, m is the modulation index, K is

the grating wave number, and D is the time dependent phase shift.

For two vertically polarized input waves of intensities Is and

IR,

m = 211/ 2 /(8+1), (17)

where B = IR/Is.

The distribution of charges among the traps and free carrier

concentrations in each cell were determined from the rate Eqs.

(11,12), subject to the constraint of charge conservation

Nli + Nhi - Noi = 0, (18)

where i refers to the ith cell, and Noi = Nldi + Nhdi + ANhi.

Here Nidi and Nhdi are the initial dark concentration levels

18



before the light was turned on and ANhi is the net gain of free

carriers in the ith cell due to the nonuniform current flow.

Since ANhi changes at each time step, the constraint given by Eq.

(18) also varies at each time iteration. A fourth order Runge

Kutta technique was used to integrate the rate equations.

The free carrier current was then determined for each cell

from Eq. (14). The photoinduced space charge field could be

determined by combining the one dimensional continuity equation

with Poisson's equation to give[18]

Esc(X,t) = -q/EEo iJh(xt) dt + G(t), (19)

where G(t) is determined from the boundary condition of the

constraint of a constant applied voltage given by

-J (x,t)dx = V, (20)

where E(x,t) = Esc(x,t) + EA(t) = ESC (x,t) - V(t)/L is the total

electrostatic field and L is the crystal length. With the

assumption of periodicity this means that

xl+A

{ESC(xt)dx = 0. (21)

The space charge field was determined by applying Eqs. (19-21).

The one dimensional continuity equation was used in the

19



following form to determine the change in the free carrier

concentration in the ith cell:

ANhi = -(V*jhi) 6t. (22)

The results from Eq. (22) were used to update the charge

conservation constraint given by Eq. (18) in the solution of the

rate equations on the next iteration.

These calculations provided a temporal evolution of the space

charge field as well as other quantities such as free carrier and

charge densities. Calculations were carried out to an approximate

steady state condition, typically to about 10 - 20 grating time

constants. The number of cells, N, into which the grating was

divided, depended upon the degree of the nonlinearity. At high

modulation, a small N would result in an unrealistic magnitude of

some of the higher harmonic components. The value for N was

chosen to meet the requirement that high frequency oscillations

in the spatial distribution of the space charge field be well

behaved. Consequently N ranged from as low as 20 for small

modulation calculations to as high as 400 for some large

modulation cases. For stability, the time step at each iteration

was required to be less than the free carrier lifetime and

characteristic transport times. This numerical approach

calculated the full space charge field within the resolution of

the element size. The magnitude and phase of the harmonic

components were determined by Fourier decomposition of the

calculated space charge field.

20



3.1.2 Numerical Results

As the numerical method used here was very computer intensive

it was practical to calculate grating formations only for a

limited, but representative set of parameters. Calculations for

BTO assumed gT = 6.8 x 10-8 cm2 /V, Ne = 3x10 1 6 cm-3, and E = 47.

These values correspond to those reported by Millerd et

al.[13], which allowed comparison of the numerical calculations

with their experimental results. For BSO we used E = 56,

Ne = ixl01 6 cm-, and gr ranged from 6.25xi0-8 to 6.25xi0-7 cm2 /V.

A range of enhancement characteristics were examined through

variations in the grating period, applied field, and gr. At

small m the numerical results were in good agreement with the

linearized theory. We note that the space-charge field amplitude

exhibited a small modulation at two times the ac field

frequency, and the spatial phase of the fundamental component

exhibited a small oscillation about a 900 phase shift with a

frequency of the applied ac field. These effects are discussed

in detail below. The modulation dependent results reported here

reflect the time ajeraged amplitude and phase.

The large signal effect, in which the gain decreases

significantly at large modulation is demonstrated in Figure 3.

Here we plot the magnitude of the imaginary part of the

fundamental component of the space charge field (El) normalized

with respect to the modulation index as a function of beam ratio

(B) for different applied electric field strengths in BTO. We

note that the fundamental component remained 901 pidse shifted

from the light intensity pattern for all beam ratios. According
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to the linearized theory, El/m should be constant, independent of

the beam ratio. The magnitudes of the calculated space charge

fields fell off from the large beam ratio values and declined to

a magnitude on the order of the applied field at 8 = 1.

In Figure 4 we plot these results as f(m) vs m. Here f(m) is

the correction function introduced by Refregier et al.[7] which

relates the magnitude of the fundamental component of the space

charge field to the modulation index:

El(m) = f(m)Eo, (23)

where Eo is the maximum imaginary part of the fundamental

component of the space charge field that can be obtained, and was

determined from El/m calculated for very small m. In the

linear-in-modulation approximation f(m) = m. However, as the

numerical results show, the value of El increased sublinearly

with m.

It is useful to consider the functional form of f(m). The

numerical results could be described quite well by the equation:

f(m) = l/a[l -exp(-am)]exp(m). (24)

This function is similar to the correction function Refregier et

al.[7] determined phenomenologically for moving gratings. The

solid lines for the results shown in Figure 4 are fits of Eq.

(24) to the calculated f(m). Similar results were obtained for

other calculations which reflected a range of crystal parameters
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Figure. 3. Normalized space charge field vs beam ratio for

different applied square-wave ac field strengths in BTO.
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Figure 4. Calculated correction function vs modulation index for

different applied square-wave ac field strengths in BTO. The

solid line is a fit of the numerical results to the equation

f(m) = 1/a(l-exp(-am)]exp(m). The values of a determined from

the fits were 8.35, 7.6, and 6.2.
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and recording conditions. Some examples are shown in Fig. 5.

The lines are a fit of Eq. (24) to the numerical results. This

equation provided a good description of the results over a wide

range of saturation characteristics. At long grating periods

the linearized theory predicts Eo < EA. For these conditions,

the numerical calculations predict a superlinear behavior in the

space charge field dependence on m. This is demonstrated in

curve (a) in Fig. 5, corresponding to A = 200 pm.

The magnitude of the correction parameter, a, as determined

from a fit of Eqn. (24) to the numerical results, depended upon

the crystal parameters and the external conditions, and could be

correlated with an enhancement parameter R, defined aE,:

R = ---- X (25)
(EA + ED)

where X (%l) is dependent on the grating period. In Fig. 6 we

plot a vs R, where we have set X = 1. Different R values were

obtained by varying the grating period, AT, and applied electric

field. The magnitude of the correction parameter exhibited an

approximate linear dependence on R over the range of R = 0.7 to

7. It was observed that an improved fit could be obtained by

defining X according to

A
X = 1 + b -- , (26)

LE

where b is a small number, determined empirically. This reflects
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Figure 5. Calculated correction function vs modulation index for

applied square-wave ac fields in BSO. (a) AT = l.9xl0- 7cm 2 /V, A=

200 Am, EA=10kV/cm, (b) AT = 6.2x10-8 cm2 /V, A= 4 Am, EA = 10

kV/cm, (c) AT = 1.9x1O-7cm2 /V, A = 60 Am, EA = 10 kV/cm, (d) AT

= 1.9x10- 7cm 2 /V, A = 30 Am, EA = 1OkV/cm, (e) MT =6.2x10-7 cm2 iV,

A = 30 Am, EA=lOkV/cm. The solid lines are a fit of the

numerical results to the equation f(m) = 1/a(1-exp(-am)]exp(m).

The values of a determined from the fit were: (a) 2.0, (b) 3.2,

(c) 4.7, (d) 7.1, (e) 15.1. The dashed line indicates f(n) = m.
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a reduced efficiency in the space charge field formation for

grating periods larger than the drift length. The dependence of

the correction parameter a on the enhancement parameter R , with

X defined by eqn. (26) and b = 0.03 is shown in Fig. 7. This

dependence can be approximated as

a = 2.15R + 0.31. (27)

Equations (23-27) approximate well the numerical results and can

be used to predict and model the photorefractive behavior for

other crystal parameters and external conditions.

Further insight into the effects of large modulation on the

grating formation can be obtained from examination of the spatial

distribution of the space charge field. In Fig. 8 we show the

calculated space charge field along one grating period for m = 1

in BTO at EA = 10 kV/cm. The field distribution could be

characterized as a square wave function. The fundamental

component of the space charge field at large modulation could be

about 20% greater than the applied field, but the contributions

from the higher harmonics lowered the peak amplitude of the total

space charge field to a value closer to the applied field. The

amplitude of the higher harmonic components depended upon the

magnitude of the saturation. In general, at m = 1 the second

harmonic component was relatively weak, < 5% of E1 , while the

third harmonic was about 30% of the fundamental, characteristic

of a square-wave profile. Even for crystal parameters and

external conditions for which the saturation was not very

strong the third harmonic component was still greater than the
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Figure 8. Space charge field distribution along one grating

period in BTO for an applied square-wave ac field of 10 kV/cm at

modulation index m = I and R = 3.9.
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second harmonic at m =1.

The temporal behavior of grating formation was also affected

at large modulation. This is demonstrated in Fig. 9 where we

plot the magnitude of the fundamental component of the space

charge field normalized by the modulation index for different

values of m as a function of normalized time, t/Tg . Here Tg

is the grating formation time constant determined from the

linearized theory. The results shown in Fig. 9 are for BTO with

EA = 10 kV/cm. At small m the space charge field exhibited the

expected exponential growth. At larger modulation the early time

response of the space charge field was as expected from the

linearized theory, but now also exhibited oscillatory behavior

At much larger modulation this oscillatory behavior was no longer

evident, as the space charge field "clamped" at a limiting value

which was on the order of the applied electric field.

These characteristics suggest that the fundamental component

of the space charge field may be written as

El(t) = f(m)Eo[l-exp(-t/T e)cos(wet)] (28)

where Te and we are functions of m and R. This equation

described well the main features of the time dependence but not

the fine details of the oscillations. Noting that at very early

times El(t)/m is independent of m, Eq. (28) implies that

f(m)
•e . .. Tg.(29)
3m

3O0
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Figure 9. Normalized fundamental component of the space charge

field vs normalized time for different values of modulation index

in BTO.
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Figure 10. Normalized fundamental component of the space charge

field vs normalized time for an applied square-wave ac electric

field corresponding to superlinear behavior for m = 1 and m =

0.001.
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This value for the grating time constant did agree well with the

calculated time dependence, for R > i. The value of we

depended on R and m in a complicated manner. When m was small,
Te A T and we << i/Te" In this limit Eq. (28) agreed with the

linearized theory. For m > 0.1, we was on the order of i/Te.

At large modulation Eq. (28) no longer provided a good

description of the temporal behavior due to the clamping of the

space charge field. It was convenient to characterize the time

response by a single exponential. For the case shown in Fig. 9

the effective grating formation time constant at m = 1 decreased

by a factor of 5 over that at small m. The change in the

effective grating time constant depended on the magnitude of the

saturation.

For small R, corresponding to superlinear grating formations,

the effective time constant was greater than T'g. In these cases

the grating continued to grow over many time constants, as

demonstrated in Fig. 10 where we compare the time dependence of

the grating formation for small and large m.

The effects of large modulation on sinusoidal ac fields were

also considered. With sinusoidal ac fields the magnitude of the

induced space charge field was much less than that for square

wave fields, R 0.75. Consequently, the large signal effect

associated with square wave-ac fields was not present for

sinusoidal ac fields. A typical result for the applied sine wave

ac field is shown in Fig. 11 for BSO at 30 pm grating period and

EA = 10kV/cm. The fundamental component of the space charge

field increased superlinearly with modulation index, and could be
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described by the correction function f(m) given by eqn. (24).

The spatial profile along one grating period for m = 1 is shown

in Fig. 12. As this profile indicates, the peak amplitude of the

space charge field was able to become nearly as large as that of

the applied field. At large m the grating formation exhibited

a very long, slow growth, similar to that of the superlinear

square-wave behavior shown in Fig. 10.
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disi.ance £ratlng per:i,

Figure 12. Space charge field distribution along one grating

period in BSO for an sinusoidal ac field of 10 kV/cm at

modulation index of 1.
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3.1.3 Discussion

As the numerical solutions show, the space charge field is

limited in magnitude to approximately the amplitude of the

applied electric field. The existence of this upper limit to

the space charge field was not unexpected, and is similar to that

found by Swinburne et al.[14) and suggested by Stepanov and

Sochava[13]. The large enhancements with the nonstationary

techniques stem from drift assisted charge redistribution. When

the space charge field becomes comparable in magnitude to that of

the applied electric field charge transport becomes inhibited,

limiting the growth of the space charge field. We note that

although the higher harmonics need to be considered, the large

signal effects are not due to competition from the higher

harmonics, as is frequently suggested. For square-wave ac fields

the presence of the higher harmonics apparently enhance the space

charge field by allowing E1 to become somewhat larger than EA.

Even in those cases where the space charge field increased

superlinearly, the higher harmonic components were significant.

The results of the numerical calculations, which reflect a

range of crystal parameters and conditions, have been expressed

in a simple analytical form through Eqs. (23-27). These

analytical expressions are quite general and are appropriate for

most applications of square wave ac fields in BSO and BTO. One

difficulty with the numerical solutions is the establishment of

limits for which these equations may be applied. We can

identify some limits based on physical arguments. Equations (23-
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17) should not be expected to apply when the space charge field

is trap limited or when charge redistribution has a significant

diffusion contribution. These conditions will exist at small

grating periods and low electric field strengths, or small Ne.

We have carried out some calculations to test these expectations.

In the former case, the space charge field increased

approximately linearly with m for Eo Z Eq, EA > Eq. In the

latter case, the analytical expressions under-estimated the space

charge field at large m for EA < 2 ED.

The results presented above refer to the microscopic space

charge field. When comparing with experimental data, beam

coupling effects must be taken into consideration as the

modulation index will vary in the z direction. Utilizing the

correction function f(m) the coupled wave differential equations

can be written as:[7]

dIR f(m) IRIS
=- ---- (30)

dz m IR+IS

and

diS f(m) IRIS
= s -------------- -aIS (31)

dz m IR+IS

where

27rreffn 3 Eo
S  =----------------- -(32)

Xcos (0)
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is the gain coefficient, a is the absorption coefficient, IR is

the reference beam, Is is the signal beam, reff is the effective

electro-optic coefficient, and n is the refractive index.

As an application ot the analytical equations and a

demonstration of the "large signal effect" we calculated the two-

beam coupling gain coefficient for different input beam ratios

and crystal thickness vs grating period. These results are shown

in Fig. 13. The gain curves were calculated for crystal

parameters of MT = 1.9x10- 7 cm2 /V, E = 56, Ne = 1016 c1 3, and

reff = 5pm/V, with EA = 5 kV/cm. In Fig. 13, we plot the gain

coefficient as determined by the linearized theory of Stepanov

and Petrov[8], labeled as curve (a). Curves (b-d) correspond to

the gain coefficient for beam ratios of 106 and 102 (m = 0.002

and 0.2) and crystal thicknesses of Imm and 10m. The gain was

calculated by numerical solving the coupled wave equations (30-

32) with f(m) determined according to equations (24-'-). The

effective gain coefficient was then determined from the

calculated gain according to[7,19]

1
r = ---ln[7oB /(8+1-y 0 )] (33)

d

where 70 is the numerically calculated gain and d is the

interaction length. Eq. (33) accounts for beam coupling

effects and gives r = Fs, provided that f(m) = m. Any departure

of the gain curves from that of curve (a) is an indication of the

nonlinearity in the space charge field dependence on m. For

curve (b), corresponding to B = 106 and d = imm, the linearized
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theory was a good approximation. However, for curves (c-d) the

nonlinearities resulted in a low effective gain coefficient and

a flattened spatial response, as compared to the linearized

theory. Not only were the nonlinear effects substantial for B

= 102, but as curve (c) shows, also for B = 106 with a 10 mm

thick crystal. It is important point to note here that with

square wave ac fields the linear-in-modulation approximation is

generally not valid, even for relatively large beam ratios.

20
a: F.

""?18

14b b- 10

14 -6

c: 10 10

I- 2

Z 12 -d.I0G
U.. e: 10 10

10 d d

L 8

0 00

2-

0
0 10 20 30 40 50

Grating Period (microns)

Figure 13. Calculated effective gain coefficient vs grating

period in BSO for different input beam ratios and crystal

thicknesses. (a) r = Fs, (b) 8 = 106, d = 1mm, (c) B = 1o6, d -

10mm, (d) B = 102, d 1mm, (e) B = 10,2 d = 10mm.
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3.1.4 Experimental Results

The photorefractive response with ac electric fields was

measured experimentally in BTO. Experiments were conducted on a

1.37 mm x 3.56 mm x 2.74 mm (001) grown at Hughes Research

Laboratories. The two large faces were antireflection coated to

eliminate spurious gratings. The short sample length of 1.37 mm

was chosen to reduce the effects of optical activity and pump

depletion. A linearly polarized helium-neon laser was used for

the two-wave mixing experiments. The two-wave mixing gain was

measured as a function of beam ratio for different applied fields

and grating periods. These results are shown in Figures 14-15.

The experimental data reflect the intensity gain. The bold

curves in each plot are the theoretical predictions, calculated

for the measured crystal parameters of Neff = 3 x10 1 6 cm-3, 1A

= 6.8x 10-8 cm2 /V, and reff = 5.4 pm/V. Equations 30 and 31 were

solved numerically to calculate the theoretical gain using the

correction function derived above. There were no free

parameters.

Figure 16 shows the time response of the two-beam coupling

process for two different beam ratios. The effective response

time was decreased by a factor of 19 at large modulation.
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Figure 14. Two-wave mixing gain versus input beam ratio in BTO.

Bold curves are results of numerical model. The thin curve is

the standard linearized theory for the 10-kV/cm case.
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As these results show, the numerical model accurately

predicted the steady-state photorefractive r-sponse for ac

fields, both square-wave and sine-wave. In comparing the

temporal characteristics predicted above and shown in Fig. 9

with experimental results we note that the two-beam coupling

time constant is different than the grating formation time

constant, and depends upon the gain coefficient and interaction

length. Using the following relation

7(t) = exp(df(m)rs(l-exp(-t/re)]. (34)

with r = 35cm- 1 and d = 0.137 cm, the numerical results predict a

decrease in the two-beam coupling gain time constant by a

factor of approximately 10 at m = 1, when compared to small m.

Although quantitative comparison between the numerical

calculations and the experimental results is difficult because of

time-dependent changes in the modulation index, this result

compares well with the experimental factor of 19.

3.1.5 AC Field Frequency Dependence

The influence of the ac field frequency on the

photorefractive characteristics was also examined. Previously,

the small modulation solutions had been time averaged. No

attention been given to the temporal variations in the phase and

magnitude of the grating. These are important parameters in

signal processing. The numerical analysis was therefore extended

to investigate the ac field frequency dependence. In this
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analysis a parameter Q was defined as the ratio of the grating

formation time constant to the period of the ac field:

Q = Tg/TAc. (36)

Results of the analysis are shown in Figures 17 - 21. The
parameter values were AT = 1.9 x 10-7 cm2 /V, Neff il cm-3,

= 56, and a grating period of 20 Am, values appropriate for BSO.

The plots in Figures 17 and 18 show the time averaged amplitude

of the fundamental component of the space charge field as a

function of frequency and Q for different grating formation t.ime

constants. Figures 19 and 20 show the temporal response over one

time period of the applied ac field for Q values of 3 and 10,

calculated for a 10 ms grating time constant. As these results

show, the space-charge field amplitude exhibited a modulation

at two times the ac field frequency, and the spatial phase of the

fundamental component exhibited a oscillation about a 900 phase

shift with a frequency of the applied ac field. The magnitude

of the oscillation depended upon the Q factor, decreasing with

increasing Q, as shown in Figure 21. This analysis indicates

that Q > 50 is required for phase stability • 10 Amplitude

stability of much less than 1% is easily obtained. However, it

should be noted that if high intensities are used to decrease the

response time, then damped high frequency oscillations may be

present due to free carriers, whose contribution to the space

charge grating increases with increasing intensity.
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3.2 Moving Gratings

The moving grating technique was considered also. The

moving grating technique involves the application of a dc field

in combination with a frequency detuning of one of the laser

beams.[7-12] This technique can significantly increase the

magnitude of the space charge field over that which would result

from the application of a dc field alone and maximize the

coiaponent of the index grating at 900. The enhancements are

similar to the ac field technique.

In this section the effects of large modulation under the

nonstationary recording conditions of moving interference fringes

and an applied electric field are studied in more detail. The

finite difference method was used to model the photorefractive

grating formations. It is shown that the saturation

characteristics can be predicted from crystal parameters over a

large range of recording conditions. The numerical results are

generalized to other crystal parameters in terms of analytical

equations that approximate the numerical solutions.

3.2.1 Small Moduiation Theory

In the small modulation index approximation the fundamental

component of the space charge field is given by[91

E= im(-EA + iED /D1 (37)

where
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D1 = -EA/Eq + b(l + ED/EM) + i(l + ED/Eq + bEA/EM)

ED = KkBT/q, EQ = qNe/(eEoK), EM = )'RNe/,4K, (38)

b KVTdie

and v is the fringe velocity. The normalized velocity that

maximizes Im(Esc) is given by

bopt = A[I ± (I-G/A 2 H)1/ 2 ] (39)

where

A = EA/EQ + ED/EA(I + ED/EQ), B = EM/ED,

c = EM/ED(l+ ED/EQ), f = (ED+ EM)/EA, (40)

H = 1 + f 2 , and G = 2AfB - 2Ac - c 2 - B2 .

At the optimum velocity the imaginary part of the space charge

field is given by[7]:

Im(Esc) = mEo (41)

where

EM 2 A -b
E= m 2----------- (42)

EA (b+c) 2 + (B -bf) 2

3.2.2 Numerical Results

In order to determine the characteristics of the space-charge

field under conditions of applied ac fields the grating formation
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was modeled with the finite difference scheme described in

section 3.1. As the numerical method used here was very

computer intensive it was practical to calculate grating

formations only for a limited, but representative set of

parameters. In Figure 22 the calculated amplitude, imaginary

component, and phase of the fundamental component of the space

charge field are plotted as a function of normalized velocity Q

= V/Vopt, at a modulation index of m = 0.002 corresponding to a

beam ratio of 8 = 106. The solid lines are the linearized theory

given by equation (37). The parameters used for these

calculations were EA = 5kV/cm, Ne = ix101 6 cm- 3 , AT = 1.25xi0-7

cm2 /V, and c = 56. At small m the numerical results were in

good agreement with the linearized theory. In Figures 23-24 the

calculated space-charge field characteristics are shown for other

values of modulation index. At large modulation the space charge

field exhibits a complicated dependence on velocity. These

velocity dependent characteristics are similar to those obtained

by Au and Solymar[16].

The imaginary component of the space charge field is an

important aspect of the photorefractive response as it affects

two beam coupling. As Figures 22-24 indicate, there is no one

definite value of fringe velocity that maximizes Im(El) for all

values of m. It is useful never-the-less to define the optimum

normalized velocity Qopt(m), as that velocity which optimizes

the imaginary part of the fundamental component of the space

charge field and is a continuous function of m. In some cases of

very large modulation, such as that shown in Figure 24, this
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solid lines are from small modulation theory. Symbols are

numerical calculations.
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definition of Qopt does not result in the largest value of

Im(El). The dependence of Qopt on m for the crystal parareters

used for Figs. 22-24 is shown in Figure 25. Similar curves were

obtained for other crsytal parameters. In general, Qopt is

greater than 1, increases with m until m z 0.6, and then

decreases as m increases towards 1. The phase shift at Qopt is

usually close to 900.

The dependence of Im(El) at Qopt on beam ratio is shown in

Figure 26. Here the space charge field is normalized with

respect to the applied electric field. Figure 26 demonstrates

the large signal effect in which the gain decreases significantly

at large m. According to the linearized theory, El/m should be

constant, independent of the beam ratio. The magnitude of the

calculated space charge field fell off from the large beam ratio

value and declined to a magnitude slightly less than the applied

field at B = 1.
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These results are again plotted in Figure 27, but as f(m) vs

m. Here f(m) is the correction function defined by equation

(23). The numerical results show that the value of Im(El)opt

increased sublinearly with m, similar to the ac field case.

It is useful to examine the functional form of f(m). We

consider the equation:

f(m) = i/a[l -exp(-am] (44)

determined phenomenologically by Refregier et al.[7] The solid

line in Figure 27 is a fit of Eq. (43) to the calculated f(m).

Similar comparisons were made for other calculations which

reflected a range of crystal parameters and recording conditions

achievd by varying the values of AT, EA, and grating period.

Some of these results are shown in Figure 28. As Figures 27

and 28 show, the correction function f(m) given by equation (44)

provided a fair description of the numerical results over a wide

range of saturation characteristics.

A feature of this correction function is that each of the

curves in Figures 27 and 28 are characterized by a single

correction parameter, a. The departure of f(m) from linearity

increases with increasing a. The magnitude of a, as determined

from a fit of eqn. (44) to the numerical results, depended upon

the crystal parameters and the external conditions, and could be

correlated the enhancement parameter R, defined in equation (25)

with X = 1.
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Figure 27. Calculated correction function versus modulation

index. The solid line is a fit of equation 44 to the numerical

calculations.
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Figure 28. Calculated correction function versus modulation

index for different crystal parameters and external conditions.

The solid lines are fits of equation 44 to the numerical results.
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The magnitude of the correction parameter exhibited an

approximate linear dependence on R over the range of R = 1 to

15, as shown in Figure 29. This dependence can be approximated

as

af = 1.43R - 0.85. (45)

Equations (43) -(45) approximate well the numerical results

and can be used to predict and to model the photorefractive

behavior for other crystal parameters and external conditions.
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Figure 29. Correction parameter versus enhancement parameter for

moving gratings.
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4. PHOTOREFRACTIVE CHARACTERIZATION

In this section we report on additional experiments,

designed to measure performance characteristics of

photorefractive crystals, relevant to the acousto-optic adaptive

signal processing application. Experiments were conducted on BSO

and BaTiO3 .

4.1 BSO

A number of BSO crystals were examined, many of which had

been supplied by Crystal Technology. In all of these experiments

electric fields (1-8 KV/cm) were applied to the crystal. It was

observed that in all of the Crystal Technology BSO crystals, a

semi-permanent grating was formed which persisted for a few hours

even under the illumination of an uniform erase beam. The

strength of this fixed grating was similar in magnitude to the

dynamic grating which was also formed. A similar effect had been

reported previously by Herriau and Huignard.[20] The presence of

this persistent grating rendered the Crystal Technology BSO

crystals unsuitable for signal processing applications. A BSO

crystal obtained from Global Technology, and BSO crystals grown

at Rome Laboratory were examined. No persistent grating effects

were detected in these crystals.

The holographic readout characteristics were studied with

the experimental arrangement shown in Figure 30. The

photorefractive grating was written through the interference of

the two first order diffracted beams from a Ronchi ruling. This

interference pattern resulted in a grating with a 20 gm grating
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Figure 30. Schematic diagram of layout for holographic readout

experiments.

65



period. A helium neon laser at 632 nm was used as the read beam.

A cube beam splitter was used to direct the two read beams (zero

and first order beams) through an acousto optic cell for

heterodyne read out. Alternately, PDl could be used to measure

the diffraction efficiency or temporal response.

The BSO crystals were 110 cut, and optically polished.

Electric fields were applied along the (110) axis direction, and

the photorefractive grating was also in this direction. The

crystal thicknesses were from 2.5 to 3 mm, and the two other

crystal dimensions were for 7 to 10 ivn. This (110) configuration

produced the maximum diffraction efficiency and minimized two-

beam coupling effects.

Experiments were conducted to examine the polarization

characteristics. It is important to note that BSO is optically

active, with a rotary power of 21.4 0 /mmf at 632 nm. Because of

anisotropic diffraction the maximum diffraction efficiency is

obtained with circularly polarized light. For the experimental

configuration used, modulation index of m = 1, a 2.6 mm thick

crystal and a square wave electric field of 3.3 KV/cm, the

maximum diffraction efficiency was 2%. The diffraction

efficiency for linearly polarized light was 1%. This

diffraction efficiency was independent of the input polarization.

The heterodyne signal was strongly dependent on the read

beam polarization. This is demonstrated in Figure 31. Figure

31a shows an oscilloscope trace of the heterodyne signal for

circularly polarized light along with that of the reference rf

signal. The noise on the heterodyne signal is due to amplifier

noise. Figures 31b and 31c show the signals for two different
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Figure 31. Heterodyne signal in BSO for different read beam

polarizations. (a) circularly polarized. (b) linear polarization

adjusted for maximum signal. (c) linear polarization adjusted

for minimum signal.
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linear polarizations which maximize and minimize the heterodyne

magnitude. The heterodyne signal for the linearly polarized

light is about twice that of the circularly polarized light, even

though the diffraction efficiency was only half as great. This

polarization dependence can be understood as follows. In

addition to being optically active, the polarization of the Bragg

diffracted beam is rotated by an angle 2', where ý is the angle

of the polarization direction of the read beam with respect to

the principal electro-optic axis. Therefore the polarization

states of the undiffracted and diffracted read beams will not be

the same, resulting in a decreased heterodyne efficiency.

4.2 Barium Titanate

Barium titanate was also examined as a candidate

photorefractive integrator. The high diffraction efficiency

potential, due to the large electro-optic coefficient makes the

ferroelectric crystals attractive. The BaTiO3 crystal used in

this characterization was a (100) cut crystal. The argon write

beams were vertically polarized (ordinary polarization) and the

HeNe read beam was horizontally polarized (extraordinary

polarization). This provided an electro-optic coefficient of 80

pm/V. It should be noted that a much larger electro-optic

coefficient can be obtained by a 450 cut crystal. A 2000 V/cm

dc electric field was applied along the C-axis direction through

silver painted electrodes. Alternating electric fields are not

useful in BaTiO3 , due to its small AT product. A 65% diffraction

efficiency was obtained in the 5mm thick crystal under the same

illumination conditions as in the BSO experiments. The
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heterodyne signal was significantly improved, as the polarization

problems experienced in BSO were not present in BaTiO3 . The

photorefractive response time was 160 s for an illumination

intensity of 2mW/cm2 .
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5. ACOUSTO-OPTIC CORRELATION & APPLICATION

BSO and BaTiO3 crystals were tested as optical integrators

for an acousto-optic correlation application.

5.1 photorefractive acousto-optic correlation

The ability of photorefractive crystals to perform the

required correlation was experimentally demonstrated for both BSO

and BaTiO3 using the experimental arrangement shown in Figure 32.

This configuration combines the time integrating correlation and

heterodyne readout. The first order Bragg diffracted output of

AO1 ( 200 MHz carrier frequency) was amplitude modulated by r(t)

(40 MHz signal). This signal was correlated with s(t) (40 MHz)

in A02. The output of A02 was then imaged in the

photorefractive crystal. The integrated correlation signal was

read by the heterodyne method, as described above. In this

arrangement part of the argon laser beam was split off to provide

the read beam. The path difference between the read and write

beams was much greater than the coherence length (z 2cm). The

rf signal s(t) was also used to provide the input to A03. The

heterodyne output of the photodetector and the rf input were

displayed on an oscilloscope. A typical result shown in Figure

33 demonstrates the feasibility of photorefractives in optical

signal processing.

70



1/2 wave lox Argon Ion Laser
plate objective

Polarizing 51 - _
B/S Cube

160 o14 wave plateDoublet Focal
plane SrrBSO crystal

r 1/4 wave plate
¢ , •/] Polarizing /S Cube

300 OV 1400I 200 200 Doublet
AO-1 -W a- Doublet

lox ra--zor AO-3•

objective 3 AO-u o

160 300 300 400
Doublet 300 Note: All numbers refer to focal

•300 lengths in mm

300 Squares are cylindrical lens

detector

Figure 32. Experimental layout for photorefractive acoustO-OPtic

correlation experiments.
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Figure 33. Heterodyne signal of acousto-optic correlation using

BSO as an integrating element.
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5.2 Acousto-Optic Adaptive Processing

The experimental layout shown in Figure 31 can be utilized

for an adaptive signal processing application. This processor

implements a lest mean square algorithm to adaptively cancel a

jamming noise introduced into a radar antenna's sidelobes. The

acousto-optic adaptive processor concept was developed by General

Electric [21]. In their implementation a Hughes liquid crystal

light (LCLV) valve was used to perform the integration function.

The LCLV was identified as limiting the performance of the

processor's performance. The acousto-optic adaptive processor

has been modified at Rome Laboratory to include the replacement

of the LCLV with a photorefractive integrator. This modification

was supported by this effort. In this section the basic concept

of the adaptive processor is described and preliminary results of

measured performance using a photorefractive integrator are

given. Detailed discussion of the acousto-optic adaptive

processor design and operation can be found in references 21.

In the adaptive processor, the acousto-optic modulator AO-l

is amplitude modulated by

r(t) = r 1 (t) + No(t) - y(t) (46)

where r 1 (t) is the target return 4gnal and No(t) is the jammer

noise received by the main antenna, and y(t) is the signal,

determined by the adaptive processor, which is subtracted to

cancel out the jammer noise. The acousto-optic cells AO-2 and

AO-3 are driven by s(t) corresponding to the signal from an
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auxiliary sidelobe antenna which receives a jammer noise signal

that contains multiple delayed versions of the jammer noise. The

algorithm finds the correlation between r(t) and s(t), then

convolves this result with s(t) to determine y(t). In the

optical implementation y(t) is the heterodyne output of the

photodetector.

The cancellation ability of the adaptive processor using

photorefractive integrators was demonstrated with BSO and BaTiO3 .

The optical layout corresponded to that shown in Figure 31, with

the output of the photodetector subtracted from the signal used

to modulate AO-l. The input signals r 1 (t) and s(t) where

monotone rf signals obtained from the same rf generator. The 1/4

wave plates were adjusted to maximize the diffraction efficiency

of the BSO photorefractive crystal. For tests with BaTiO3 the

1/4 waveplates were removed, and the polarizations of the write

and read beams were made vertical (ordinary) and horizontal

(extraordinary) respectively. Figures 34 and 35 show the

cancellation obtained with a BSO crystal using both a dc field

and an ac field. A dc field of 8KV/cm was used to obtain 25 dB

of cancellation, but accompanied by a large increase in the noise

floor. The cancellation with an ac field of 4kV/cm at 1.6 kHz

square wave is shown if Figure 35. The cancellation speed of the

system was approximately 1 msec.

Figure 36 shows the cancellation obtained with a BaTiO3

crystal. Although the cancellation was greater than that

obtained with the BSO crystal, the cancellation was not stable.

The magnitude of the cancellation jumped around between about 28

dB and about 55 dB. The increased cancellation is attributed to
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the higher diffraction efficiency obtained with BaTiO3. The lack

of stability is thought to be a consequence of the slow response

time.

It should be noted that the adaptive processor cancellation

results reported here are considered preliminary. These tests

demonstrate proof of principle, and provide information for

improved system design. The results demonstrate the tradeoffs

between integrator response time and diffraction efficiency.

0 - - - n 'ncie
0

=-• ii. 2 -f... -- --1
E Uncancelled

-40

-8 0,.
35 40 45

Frequency (MHz)

Figure 34. Cancellation performance for BSO with a DC electric

field and a monotone rf signal.

75



10!
E ~Uncancelled1 4

-. - Cancelled

-70
39.9 40 40.:

Frequency (MHz)

Figure 35. Cancellation performance for BSO with an AC electric

field and a monotone rf signal.
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Figure 36. Cancellation obtained using BaTiO3  as the

photorefractive integrating element in the adaptive processor.
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6. SUMMARY

The utilization of photorefractive crystals as time

integrating elements in an acousto-optic correlation application

was investigated. Bil 2 SiO2 0 (BSO) was examined as a candidate

crystal. This choice was based upon speed, size, availability,

and wavelength response.

Because of the potential enhancements achievable in BSO, the

nonstationary recording techniques of applied ac electric fields

and moving gratings were examined in detail. in light of the

inadequacies of the small modulation theory, a finite difference

technique was developed and used to model the grating formation

characteristics. These numerical results provided accurate

predictions of the space charge field characteristics.

Analytical approximations to the numerical solutions were also

determined.

Experiments were conducted with BSO and BaTiO3 crystals.

BSO provides a fast response time but a small diffraction

efficienct due its small electro-optic coefficient. BaTiO3

provides a much larger diffraction efficiency, but at the expense

of speed. Adaptive processing cancellation was achieved with

both crystals. Neither crystal performed exceptionally well

alone. The large cancellation obtained with BaTiO3 and the good

stability observed with BSO demonstrates the feasibility of using

photorefractives as integrating elements in acousto-optic

adaptive processing.
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MISSION

OF

ROME LABORATORY

Rome Laboratory plans and executes an interdisciplinary program in re-
search, development, test, and technology transition in support of Air

Force Command, Control, Communications and Intelligence (C 31) activities
for all Air Force platforms. It also executes selected acquisition programs
in several areas of expertise. Technical and engineering support within
areas of competence is provided to ESD Program Offices (POs) and other

ESD elements to perform effective acquisition of C31 systems. In addition,
Rome Laboratory's technology supports other AFSC Product Divisions, the
Air Force user community, and other DOD and non-DOD agencies. Rome
Laboratory maintains technical competence and research programs in areas
including, but not limited to, communications, command and control, battle
management, intelligence information processing, computational sciences
and software producibility, wide area surveillance/sensors, signal proces-
sing, solid state sciences, photonics, electromagnetic technology, super-
conductivity, and electronic reliability/maintainability and testability.


